Sugeta, M. \& Yamase, T. (1993). Bull. Chem. Soc. Jpn, 66, 444-449.
Yamase, T. \& Naruke, H. (1991). J. Chem. Soc. Dalton Trans. pp. 285292.

Yamase, T., Naruke, H. \& Sasaki, Y. (1990). J. Chem. Soc. Dalton Trans. pp. 1687-1696.

Acta Cryst. (1994). C50, 330-332

$\mathrm{K}_{3} \mathrm{H}\left(\mathrm{SeO}_{4}\right)_{2}$ at 297 and 30 K

Mizuhiko Ichikawa
Department of Physics, Faculty of Science, Hokkaido University, Sapporo 060, Japan

Torbiörn Gustafsson and Ivar Olovsson
Institute of Chemistry, Uppsala University, Box 531, S 75121 Uppsala, Sweden
(Received 19 March 1993; accepted 14 September 1993)

Abstract

In tripotassium hydrogen bis(selenate), $\mathrm{K}_{3} \mathrm{H}\left(\mathrm{SeO}_{4}\right)_{2}$, two selenate groups form a dimer through a hydrogen bond of 2.496 (2) Å, at 30 K (10 K above the low-temperature transition point). This is the shortest hydrogen bond among the members of the $M_{3} \mathrm{H}\left(\mathrm{SeO}_{4}\right)_{2}$-type crystals exhibiting the low-temperature phase transition.

Comment

Among the members of the $\mathrm{M}_{3} \mathrm{H}\left(\mathrm{XO}_{4}\right)_{2}$-type crystals (M $=\mathrm{K}, \mathrm{Rb}, \mathrm{Cs} ; X=\mathrm{S}, \mathrm{Se}$) which exhibit a low-temperature (possibly antiferroelectric) phase transition, $\mathrm{K}_{3} \mathrm{H}\left(\mathrm{SeO}_{4}\right)_{2}$ has the lowest transition temperature (T_{c}) of 20 K (Endo, Kaneko, Osaka \& Makita, 1983).

In view of the low T_{c} of the title compound, the hydrogen-bond distance just above T_{c} is needed in order to examine the correlation between the transition temperature and hydrogen-bonding distances in the $\mathrm{M}_{3} \mathrm{H}\left(\mathrm{SeO}_{4}\right)_{2}-$ type crystals. Thus the structure determination at 30 K was undertaken. The data at 297 K were collected so that comparison may be made with previous work performed with a spherical shaped specimen (Ichikawa, Sato, Komukae \& Osaka, 1992). An as-grown crystal was used in this work which had a hexagonal plate shape and was obtained by evaporation of a saturated solution.

The bond lengths and angles at 297 K agree with the previous results at 299 K (Ichikawa et al., 1992) within 3σ, except for $\mathrm{O}(2)-\mathrm{Se}-\mathrm{O}(4)(4 \sigma)$. The hydrogenbond distance R [2.496 (2) \AA] in $\mathrm{K}_{3} \mathrm{H}\left(\mathrm{SeO}_{4}\right)_{2}$ at 30 K is the shortest among the members of the $\mathrm{M}_{3} \mathrm{H}\left(\mathrm{XO}_{4}\right)_{2^{-}}$ type crystals exhibiting the low-temperature phase transition. By including the present results, the validity of a
linear correlation between T_{c} and R is also established for $\mathrm{M}_{3} \mathrm{H}\left(\mathrm{SeO}_{4}\right)_{2}$-type crystals with zero-dimensional hydrogen-bond networks (Ichikawa, Gustafsson \& Olovsson, 1993).

Fig. 1. The b-axis projection of the structure of $\mathrm{K}_{3} \mathrm{H}\left(\mathrm{SeO}_{4}\right)_{2}$ at 30 K . Thermal ellipsoids are scaled to include 50% probability. The B value of the H atoms is set to $2.0 \dot{\mathrm{~A}}^{2}$. Thick lines denote covalent bonds, thin lines indicate short K...O distances.

Experimental

At 30 K
Crystal data
$\mathrm{K}_{3} \mathrm{H}\left(\mathrm{SeO}_{4}\right)_{2}$
$M_{r}=404.2$
Monoclinic
A2/a
$a=10.0464$ (8) \AA
$b=5.8561$ (4) \AA
$c=14.8215(13) \AA$
$\beta=103.629(12)^{\circ}$
$V=847.44$ (10) \AA^{3}
$Z=4$
Data collection
Huber/Stoe/Aracor diffractometer
$\omega / 2 \theta$ scans
Absorption correction:
ABSSTOE (Lundgren, 1983)
$T_{\text {min }}=0.287, T_{\text {max }}=$ 0.466
$D_{x}=3.168 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 30 reflections
$\theta=25.9-29.9^{\circ}$
$\mu=9.86 \mathrm{~mm}^{-1}$
Hexagonal plate
$0.250 \times 0.233 \times 0.067 \mathrm{~mm}$ Colourless

2543 observed reflections
[All $I>0$ and those $I<0$
with $|I|<15 \sigma(I)]$
$R_{\text {int }}=0.017$
$\theta_{\text {max }}=40.00^{\circ}$
$h=-18 \rightarrow 13$
$k=-10 \rightarrow 10$
$l=0 \rightarrow 26$

4975 measured reflections 2543 independent reflections

Refinement

Refinement on F^{2}
$R=0.0549$
$w R=0.0648$
$S=1.41$
4967 reflections
65 parameters
All H-atom parameters refined
Weighting scheme based on measured e.s.d.'s
$(\Delta / \sigma)_{\text {max }}=0.006$
$\Delta \rho_{\text {max }}=1.3 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-1.4 \mathrm{e}^{-3}$

At 297 K

Crystal data
$\mathrm{K}_{3} \mathrm{H}\left(\mathrm{SeO}_{4}\right)_{2}$
$M_{r}=404.2$
Monoclinic
A2/a
$a=10.1325(5) \AA$
$b=5.9042(3) \AA$
$c=14.9620(7) \AA$
$\beta=103.638(7))^{\circ}$
$V=869.86(6) \AA^{3}$
$Z=4$

Data collection
Huber/Stoe/Aracor diffractometer
$\omega / 2 \theta$ scans
Absorption correction:
ABSSTOE (Lundgren, 1983)
$T_{\text {min }}=0.287, T_{\text {max }}=$ 0.466

5495 measured reflections 2697 independent reflections

Refinement

Refinement on F^{2}
$R=0.0855$
$w R=0.0561$
$S=1.20$
5483 reflections
65 parameters
All H -atom parameters refined
Weighting scheme based on measured e.s.d.'s
$(\Delta / \sigma)_{\text {max }}=0.04$
$\Delta \rho_{\text {max }}=0.8 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.9 \mathrm{e}^{-3}$

6 standard reflections frequency: 240 min intensity variation: 0.03%

Extinction correction:
Becker \& Coppens
(1975) type 1 Lorentzian
isotropic Extinction coefficient: $0.35(2) \times 10^{4}$
Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV, Table 2.2B)

$$
\begin{aligned}
& D_{x}=3.086 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \lambda=0.71073 \AA \\
& \text { Cell parameters from } 31 \\
& \text { reflections } \\
& \theta=25.7-29.7^{\circ} \\
& \mu=9.86 \mathrm{~mm}^{-1} \\
& \text { Hexagonal plate } \\
& 0.250 \times 0.233 \times 0.067 \mathrm{~mm} \\
& \text { Colourless }
\end{aligned}
$$

2697 observed reflections
[All $I>0$ and those $I<0$ with $|I|<15 \sigma(I)]$
$R_{\text {int }}=0.0222$
$\theta_{\text {max }}=39.94^{\circ}$
$h=-18 \rightarrow 17$
$k=-10 \rightarrow 10$
$l=0 \rightarrow 26$
6 standard reflections frequency: 240 min intensity variation: 1.4%

Extinction correction: Becker \& Coppens (1975) type 1 Lorentzian isotropic
Extinction coefficient: $0.74(3) \times 10^{4}$
Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV, Table 2.2B)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$ at 30 K

$U_{\mathrm{eq}}=(1 / 3) \sum_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
K(1)	1/4	0.75972 (5)	0	0.00729
K(2)	0.65161 (2)	0.73825 (3)	0.19635 (2)	0.00796
Se	0.45991 (1)	0.23336 (2)	0.11623 (1)	0.00482
$\mathrm{O}(1)$	0.39793 (8)	0.01108 (12)	0.15819 (6)	0.00929
$\mathrm{O}(2)$	0.43454 (8)	0.18081 (14)	0.00090 (6)	0.01023
$\mathrm{O}(3)$	0.62550 (8)	0.25116 (12)	0.15454 (6)	0.00898
$\mathrm{O}(4)$	0.38165 (8)	0.46782 (12)	0.13066 (6)	0.00989

Table 2. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$ at 297 K

$U_{\mathrm{eq}}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
K(1)	1/4	0.75530 (5)	0	0.0236
K(2)	0.65188 (2)	0.73694 (4)	0.19666 (2)	0.0277
Se	0.46017 (1)	0.23222 (1)	0.11600 (1)	0.0162
O(1)	0.39807 (8)	0.01316 (12)	0.15738 (5)	0.0305
$\mathrm{O}(2)$	0.43537 (9)	0.18101 (15)	0.00208 (5)	0.0302
$\mathrm{O}(3)$	0.62379 (8)	0.24914 (12)	0.15450 (7)	0.0301
$\mathrm{O}(4)$	0.38288 (8)	0.46464 (12)	0.12963 (6)	0.0313

Table 3. Selected geometric parameters $\AA{ }^{\circ},^{\circ}$)

	30 K	297 K	299 K*
K -atom cooordination			
$\mathrm{K}(1)-\mathrm{O}\left(1^{1}\right)$	2.8689 (9)	2.9065 (8)	2.909 (2)
$\mathrm{K}(1)-\mathrm{O}\left(2^{\text {i }}\right.$)	3.0833 (8)	3.1335 (9)	3.131 (3)
$\mathrm{K}(1)-\mathrm{O}\left(2^{\text {ii }}\right)$	3.1914 (8)	3.2175 (9)	3.222 (2)
$\mathrm{K}(1)-\mathrm{O}\left(3^{\text {ii }}\right)$	2.8575 (9)	2.8938 (9)	2.894 (2)
$\mathrm{K}(1)-\mathrm{O}(4)$	2.6860 (8)	2.6996 (9)	2.696 (3)
$\mathrm{K}(2)-\mathrm{O}\left(1^{i}\right)$	2.9477 (8)	2.9843 (8)	2.977 (3)
$\mathrm{K}(2)-\mathrm{O}\left(1^{\text {iii }}\right)$	3.0427 (8)	3.0718 (8)	3.077 (3)
$\mathrm{K}(2)-\mathrm{O}\left(1^{\text {iv }}\right)$	2.7447 (8)	2.7797 (8)	2.782 (3)
$\mathrm{K}(2)-\mathrm{O}\left(2^{\text {ii }}\right.$)	2.8859 (9)	2.9357 (8)	2.930 (2)
$\mathrm{K}(2)-\mathrm{O}(3)$	2.9177 (7)	2.9477 (8)	2.944 (3)
$\mathrm{K}(2)-\mathrm{O}\left(3^{\text {i }}\right.$)	3.0656 (7)	3.0886 (8)	3.092 (3)
$\mathrm{K}(2)-\mathrm{O}\left(3^{v}\right)$	2.7517 (10)	2.7828 (9)	2.785 (2)
$\mathrm{K}(2)-\mathrm{O}(4)$	3.0931 (8)	3.1194 (8)	3.124 (3)
$\mathrm{K}(2)-\mathrm{O}\left(4^{\text {iii }}\right)$	2.9674 (8)	3.0014 (8)	3.000 (3)
$\mathrm{K}(2)-\mathrm{O}\left(4^{\text {vi }}\right)$	3.1705 (8)	3.2273 (8)	3.236 (3)
SeO_{4}			
$\mathrm{Se}-\mathrm{O}(1)$	1.6283 (8)	1.6235 (7)	1.620 (2)
$\mathrm{Se}-\mathrm{O}(2)$	1.6959 (8)	1.6906 (8)	1.694 (2)
$\mathrm{Se}-\mathrm{O}(3)$	1.6295 (8)	1.6248 (8)	1.623 (2)
$\mathrm{Se}-\mathrm{O}(4)$	1.6212 (7)	1.6165 (8)	1.614 (2)
$\mathrm{O}(1)-\mathrm{O}(2)$	2.6386 (12)	2.6341 (11)	2.635 (3)
$\mathrm{O}(1)-\mathrm{O}(3)$	2.6953 (11)	2.6871 (11)	2.682 (3)
$\mathrm{O}(1)-\mathrm{O}(4)$	2.7048 (10)	2.6966 (10)	2.696 (3)
$\mathrm{O}(2)-\mathrm{O}(3)$	2.6414 (12)	2.6372 (12)	2.641 (3)
$\mathrm{O}(2)-\mathrm{O}(4)$	2.6995 (12)	2.6847 (11)	2.677 (3)
$\mathrm{O}(3)-\mathrm{O}(4)$	2.7070 (11)	2.6995 (11)	2.696 (3)
$\mathrm{O}(1)-\mathrm{Se}-\mathrm{O}(2)$	105.05 (4)	105.26 (4)	105.3 (1)
$\mathrm{O}(1)-\mathrm{Se}-\mathrm{O}(3)$	111.65 (4)	111.63 (4)	111.6 (1)
$\mathrm{O}(1)-\mathrm{Se}-\mathrm{O}(4)$	112.68 (4)	112.66 (4)	113.0 (1)
$\mathrm{O}(2)-\mathrm{Se}-\mathrm{O}(3)$	105.16 (4)	105.38 (5)	105.5 (1)
$\mathrm{O}(2)-\mathrm{Se}-\mathrm{O}(4)$	108.92 (4)	108.52 (4)	108.0 (1)
$\mathrm{O}(3)-\mathrm{Se}-\mathrm{O}(4)$	112.76 (4)	112.78 (4)	112.8 (1)
Hydrogen bond			
$\mathrm{O}(2) \cdots \mathrm{O}\left(2^{\text {vii }}\right)$	2.4965 (16)	2.5153 (18)	2.524 (5)

Symmetry codes: (i) $x, 1+y, z$; (ii) $1-x, 1-y,-z$; (iii) $\frac{1}{2}+x, 1-y, z$; (iv) $1-x, \frac{1}{2}-y, \frac{1}{2}-z ;$ (v) $\frac{3}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$; (vi) $1-x, \frac{3}{2}-y, \frac{1}{2}-z$; (vii) $1-x,-y,-z$.

[^0]Data collection: DIF4 (Stoe \& Cie, 1988). Cell refinement: LATCON (Lundgren, 1983). Data reduction: STOEDATRED, ABSSTOE (Lundgren, 1983). Program(s) used to refine structure: DUPALS (Lundgren, 1983). Molecular graphics: ORTEPII (Johnson, 1976).

The authors thank Mr Hilding Karlsson for technical assistance throughout this work. The work is partly supported by a Grant-in-Aid for Cooperative Research (02302021) and a Grant-in-Aid for General Scientific Research (05640367) from the Ministry of Education, Science and Culture, Japan.

Lists of structure factors, anisotropic displacement parameters, H-atom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71628 (90 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: ABI083]

References

Becker, P. J. \& Coppens, P. (1975). Acta Cryst. A31, 417-425.
Endo, M., Kaneko, T., Osaka, T. \& Makita, Y. (1983). J. Phys. Soc. Jpn, 52, 3829-3832.
Ichikawa, M., Gustafsson, T. \& Olovsson, I. (1993). Solid State Commun. 87, 349-353.
Ichikawa, M., Sato, S., Komukae, M. \& Osaka, T. (1992). Acta Cryst. C48, 1569-1571.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Lundgren, J.-O. (1983). Crystallographic Computing Programs. Report UUIC-B13-4-05. Institute of Chemistry, Univ. of Uppsala, Sweden.
Stoe \& Cie (1988). DIF4. Diffractometer Control Program. Version 6.2. Stoe \& Cie, Darmstadt, Germany.

Acta Cryst. (1994). C50, 332-336

Structures of $\mathrm{LuFeO}_{3}(\mathrm{ZnO})_{m}$ ($m=1,4,5$ and 6)

M. Isobe, N. Kimizuka, M. Nakamura and T. Mohri

National Institute for Research in Inorganic Materials, Namiki 1-I, Tsukuba, Ibaraki 305, Japan
(Received 18 August 1992; accepted 2 August 1993)

Abstract

The structures of the title compounds, iron lutetium zinc oxides, can be described as a close packing of O atoms, with Lu atoms in octahedral voids and Fe

and Zn atoms in tetrahedral voids. Blocks constituting $m+1$ layers of Fe and/or Zn atoms along the c axis are alternately stacked with single layers of Lu along the c axis.

Comment

In the process of establishing the phase diagrams of the $R_{2} \mathrm{O}_{3}-A_{2} \mathrm{O}_{3}-M \mathrm{O}(R=\mathrm{Sc}, \mathrm{Y}, \mathrm{In}, \mathrm{Ho}, \mathrm{Er}, \mathrm{Tm}, \mathrm{Yb}$, $\mathrm{Lu} ; A=\mathrm{Al}, \mathrm{Fe}, \mathrm{Ga} ; M=\mathrm{Mg}, \mathrm{Mn}, \mathrm{Fe}, \mathrm{Co}, \mathrm{Cu}, \mathrm{Zn}$, Cd) system, Kimizuka, Mohri, Matsui \& Siratori (1988) and Kimizuka \& Mohri (1989) identified several new homologous compounds of $R A O_{3^{-}}$ $(M O)_{m}(m=$ integer $)$, and estimated that these compounds have $\mathrm{InFeO}_{3}(\mathrm{ZnO})_{m}$-type structures through both X-ray powder diffraction and electrondiffraction analysis. However, the compounds, including $\mathrm{LuFeO}_{3}(\mathrm{ZnO})_{m}$, have not been studied by the single-crystal X-ray method and structural details were not known. We have, therefore, determined the structure of the title compounds by the single-crystal method to understand the crystal chemistry of the $\mathrm{LuFeO}_{3}-\mathrm{ZnO}$ system. The crystals were grown through the solid-state reaction between $\mathrm{Lu}_{2} \mathrm{O}_{3}$, $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and ZnO powder in platinum tubes at 1823 K for three days.
$\mathrm{LuFeO}_{3}(\mathrm{ZnO})$ (Kimizuka \& Takayama, 1981) is isostructural with the compounds $\operatorname{In}_{2} \mathrm{ZnS}_{4}$ (Lappe, Niggli, Nitsche \& White, 1962) and $\mathrm{YbFe}_{2} \mathrm{O}_{4}$ (Kato, Kawada, Kimizuka \& Katsura, 1975; Malaman et al., 1975). As for these compounds, the structures of $\mathrm{LuFeO}_{3}(\mathrm{ZnO})_{m}$ (Fig. 1) can be described as a close packing of O atoms, with Lu atoms in the octahedral voids of the cubic close-packed layers and Fe and Zn atoms (denoted M) in the tetrahedral voids of hexagonal close-packed layers. Commonly with these compounds, the basic structure consists of LuO_{2}^{-}and $\left(\mathrm{FeZn}_{m}\right) \mathrm{O}_{m+1}^{+}$layers alternately stacked along the c axis. Bond lengths and angles in each coordination polyhedron (Fig. 2) are listed in Table 2. LuO_{6} octahedra share edges forming a continuous layer on the c plane; $\mathrm{O}-\mathrm{Lu}-\mathrm{O}$ bond angles deviate by 10° from the ideal values of 90°. The M lexcluding $M(1)$ for m $=$ even] atoms shift from the centre of gravity of the coordination tetrahedra along the c axis in the opposite direction to the apical O atom to form trigonal bipyramids, resulting in long bonds to the apical O atoms [$M-\mathrm{O}^{\text {ii }} 2.215$ (8)-2.990 (15) \AA; Table 2]. For $m=$ even, the $M(1)$ atom is on the centre of the equatorial triangle by the requirements of symmetry. The $\mathrm{O}-\mathrm{M}-\mathrm{O}$ angles are between 120 and 113°; these angles approach the ideal angle of 109.47° [110.8 (3) ${ }^{\circ}$ in ZnO (Abrahams \& Bernstein, 1969)] when their Zn content increases.
For the compound with $m=1$, the displacement parameters U_{33} of Lu and $\mathrm{O}(1)$ were abnormally large; therefore, the X-ray photographs were exam-

[^0]: * Ichikawa et al. (1992).

